

By the end of the lesson students should be able to:

- Calculate the mean of data
- Calculate the standard deviation of data
- Calculate the probability of an observation in a normal distribution
- Calculate the percentile of an observation in a normal distribution

I. Intro

- A. BME arguably uses statistics more than other engineering disciplines. Why? Blame biology, which has a lot of variation. A few examples:
  1. Heights of people
  2. Diameters of cells
  3. Blood pressure
- B. Some common applications of statistics in biomedical engineering industry:
  1. Materials testing
  2. Drug testing
  3. Implant testing
- C. Things in biology/biomedical engineering often have so many variables that there is considerable uncertainty with almost anything that you do.
- D. Statistics lets you work with the uncertainty quantitatively

II. Mean

- A. Another name for average
- B. This describes the location that data tend to cluster around. It's what you learned about in grade school.
- C. Use the formula

- D. In words: Add up all the data and divide by the total number

**E. Student exercises.** Breakout room tasks:

1. Report sum of all heights from your breakout room & chat the answer to me
2. I will chat you the class average height,  $\mu$ .

3. Use  $\mu$  in the following formula:  $\sum (X_i - \mu)^2$  and chat me the results. In words, the equation says, “For each height in your group, subtract the mean from it and square the answer. Do this for each member of your group and add all the numbers together.”
4. Text me the result from #3, then you may leave the breakout room.

### III. Variance

- A. The mean tells us the position about which numbers tend to cluster, but we would also like to know how much the data deviates from the mean.
- B. The *variance* is what we call the average distance of data from the mean. We find the variance by averaging the distance between the data and the mean for the whole data set. There are two types of variances
  1. Population variance

- a) We use this one since we’re interested in the variance within this class

2. Sample variance

- a) This one tends to be the more frequently used, because you often don’t have access to the whole population.
    - b) Think of sampling prosthetic bone lengths from an assembly line. You don’t measure them all, just every 100 or so.
    - c) The  $n - 1$  on the bottom is one reason statistics is so confusing. You just have to remember that it’s  $n - 1$ . For the curious, your stats prof can explain why you use  $n - 1$  instead of just  $n$ .

### IV. Standard deviation

- A. But variance is in different units than what we want (it’s squared, whereas the original was not)

B. So how to solve? Take the square root! This is called the *standard deviation*

V. Normal distribution aka Gaussian distribution

- A. A distribution is just what it sounds like. If you plot each point of the data, how is it distributed? Is it evenly spread out? Does it tend to cluster more in the middle and not so much at the edges? The pattern determines what kind of distribution best represents the data.
- B. There are many distributions, but the one we focus on is the most common—the normal or Gaussian distribution
- C. If I plot the height data, it looks like this:
  
- D. Several things to notice:
  1. It has a mean of  $\mu$
  2. As I get away from the mean, the frequency of observations goes down. If I go out far enough, those observations go to zero
  3. The formula for the normal distribution is
  
- 4. This is also known as the **probability density function**

5. Use integral calculus to find out the area under the curve. The standard deviations let us quantify the data a little better
  - a) 68.26% of all data fall within  $\pm 1\sigma$
  - b) 95.44% of all data fall within  $\pm 2\sigma$
  - c) 99.73% of all data fall within  $\pm 3\sigma$
6. I can draw the standard deviations on top of the probability density function like this
  
  
  
  
  
  
  
  
  
7. What can you use this curve for? Well, the area under the curve tells you the probability of picking a student with a specific height. How do you find area?
  - a) Integrate the equation by hand
  - b) Look up the answer in a table
  - c) Use the appropriate function in Matlab/Python, etc.
8. We are going to use the table because it is the easiest to learn with.
  - a) Here's the equation we are interested in solving:

- b) First, calculate the value inside the parenthesis, called the  $z$  statistic. Once you calculate this value, you will look up a corresponding value on a table.
- c) Second, decide which type of probability you want to find. Your options are:
  - (1) The probability that I pick is less than some value
  - (2) The probability that a height is greater than some value
  - (3) The probability that a height falls within some range
- d) Sometimes, you might want to find the percentile. In other words, what is the 90th height percentile for the class.
- e) Use this equation:
- f) If you want to find 50th percentile and 95th percentile:

E. Student example 1. The forearm-hand length of adult males is normally distributed, with mean  $\mu = 18.86"$  and standard deviation  $\sigma = 0.81"$ .

1. Find the probability that a randomly chosen man's forearm-hand length is (1) less than 19", (2) between 16.5" and 17", (3) between 18" and 20", and (4) greater than 21".
2. Find the following percentiles: (1) 1st, (2) 5th, (3) 50th, (4) 60th.

F. Student example 2. The sitting height of adult females is normally distributed, with mean  $\mu = 35.94''$  and standard deviation  $\sigma = 1.29''$ .

1. Find the probability that a randomly chosen woman's sitting height is (1) less than 33", (2) between 34" and 35.5", (3) between 33" and 37", and (4) greater than 40".
2. Find the following percentiles: (1) 5th, (2) 10th, (3) 75th, (4) 95th.

| <b><i>z</i></b> | <b>0</b> | <b>0.01</b> | <b>0.02</b> | <b>0.03</b> | <b>0.04</b> | <b>0.05</b> | <b>0.06</b> | <b>0.07</b> | <b>0.08</b> | <b>0.09</b> |
|-----------------|----------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
| <b>-0</b>       | .50000   | .49601      | .49202      | .48803      | .48405      | .48006      | .47608      | .47210      | .46812      | .46414      |
| <b>-0.1</b>     | .46017   | .45620      | .45224      | .44828      | .44433      | .44034      | .43640      | .43251      | .42858      | .42465      |
| <b>-0.2</b>     | .42074   | .41683      | .41294      | .40905      | .40517      | .40129      | .39743      | .39358      | .38974      | .38591      |
| <b>-0.3</b>     | .38209   | .37828      | .37448      | .37070      | .36693      | .36317      | .35942      | .35569      | .35197      | .34827      |
| <b>-0.4</b>     | .34458   | .34090      | .33724      | .33360      | .32997      | .32636      | .32276      | .31918      | .31561      | .31207      |
| <b>-0.5</b>     | .30854   | .30503      | .30153      | .29806      | .29460      | .29116      | .28774      | .28434      | .28096      | .27760      |
| <b>-0.6</b>     | .27425   | .27093      | .26763      | .26435      | .26109      | .25785      | .25463      | .25143      | .24825      | .24510      |
| <b>-0.7</b>     | .24196   | .23885      | .23576      | .23270      | .22965      | .22663      | .22363      | .22065      | .21770      | .21476      |
| <b>-0.8</b>     | .21186   | .20897      | .20611      | .20327      | .20045      | .19766      | .19489      | .19215      | .18943      | .18673      |
| <b>-0.9</b>     | .18406   | .18141      | .17879      | .17619      | .17361      | .17106      | .16853      | .16602      | .16354      | .16109      |
| <b>-1</b>       | .15866   | .15625      | .15386      | .15151      | .14917      | .14686      | .14457      | .14231      | .14007      | .13786      |
| <b>-1.1</b>     | .13567   | .13350      | .13136      | .12924      | .12714      | .12507      | .12302      | .12100      | .11900      | .11702      |
| <b>-1.2</b>     | .11507   | .11314      | .11123      | .10935      | .10749      | .10565      | .10383      | .10204      | .10027      | .09853      |
| <b>-1.3</b>     | .09680   | .09510      | .09342      | .09176      | .09012      | .08851      | .08692      | .08534      | .08379      | .08226      |
| <b>-1.4</b>     | .08076   | .07927      | .07780      | .07636      | .07493      | .07353      | .07215      | .07078      | .06944      | .06811      |
| <b>-1.5</b>     | .06681   | .06552      | .06426      | .06301      | .06178      | .06057      | .05938      | .05821      | .05705      | .05592      |
| <b>-1.6</b>     | .05480   | .05370      | .05262      | .05155      | .05050      | .04947      | .04846      | .04746      | .04648      | .04551      |
| <b>-1.7</b>     | .04457   | .04363      | .04272      | .04182      | .04093      | .04006      | .03920      | .03836      | .03754      | .03673      |
| <b>-1.8</b>     | .03593   | .03515      | .03438      | .03362      | .03288      | .03216      | .03144      | .03074      | .03005      | .02938      |
| <b>-1.9</b>     | .02872   | .02807      | .02743      | .02680      | .02619      | .02559      | .02500      | .02442      | .02385      | .02330      |
| <b>-2</b>       | .02275   | .02222      | .02169      | .02118      | .02068      | .02018      | .01970      | .01923      | .01876      | .01831      |
| <b>-2.1</b>     | .01786   | .01743      | .01700      | .01659      | .01618      | .01578      | .01539      | .01500      | .01463      | .01426      |
| <b>-2.2</b>     | .01390   | .01355      | .01321      | .01287      | .01255      | .01222      | .01191      | .01160      | .01130      | .01101      |
| <b>-2.3</b>     | .01072   | .01044      | .01017      | .00990      | .00964      | .00939      | .00914      | .00889      | .00866      | .00842      |
| <b>-2.4</b>     | .00820   | .00798      | .00776      | .00755      | .00734      | .00714      | .00695      | .00676      | .00657      | .00639      |
| <b>-2.5</b>     | .00621   | .00604      | .00587      | .00570      | .00554      | .00539      | .00523      | .00508      | .00494      | .00480      |
| <b>-2.6</b>     | .00466   | .00453      | .00440      | .00427      | .00415      | .00402      | .00391      | .00379      | .00368      | .00357      |
| <b>-2.7</b>     | .00347   | .00336      | .00326      | .00317      | .00307      | .00298      | .00289      | .00280      | .00272      | .00264      |
| <b>-2.8</b>     | .00256   | .00248      | .00240      | .00233      | .00226      | .00219      | .00212      | .00205      | .00199      | .00193      |
| <b>-2.9</b>     | .00187   | .00181      | .00175      | .00169      | .00164      | .00159      | .00154      | .00149      | .00144      | .00139      |
| <b>-3</b>       | .00135   | .00131      | .00126      | .00122      | .00118      | .00114      | .00111      | .00107      | .00104      | .00100      |
| <b>-3.1</b>     | .00097   | .00094      | .00090      | .00087      | .00084      | .00082      | .00079      | .00076      | .00074      | .00071      |
| <b>-3.2</b>     | .00069   | .00066      | .00064      | .00062      | .00060      | .00058      | .00056      | .00054      | .00052      | .00050      |
| <b>-3.3</b>     | .00048   | .00047      | .00045      | .00043      | .00042      | .00040      | .00039      | .00038      | .00036      | .00035      |
| <b>-3.4</b>     | .00034   | .00032      | .00031      | .00030      | .00029      | .00028      | .00027      | .00026      | .00025      | .00024      |
| <b>-3.5</b>     | .00023   | .00022      | .00022      | .00021      | .00020      | .00019      | .00019      | .00018      | .00017      | .00017      |
| <b>-3.6</b>     | .00016   | .00015      | .00015      | .00014      | .00014      | .00013      | .00013      | .00012      | .00012      | .00011      |
| <b>-3.7</b>     | .00011   | .00010      | .00010      | .00009      | .00009      | .00009      | .00008      | .00008      | .00008      | .00008      |
| <b>-3.8</b>     | .00007   | .00007      | .00007      | .00006      | .00006      | .00006      | .00006      | .00005      | .00005      | .00005      |
| <b>-3.9</b>     | .00005   | .00005      | .00004      | .00004      | .00004      | .00004      | .00004      | .00004      | .00003      | .00003      |
| <b>-4</b>       | .00003   | .00003      | .00003      | .00003      | .00003      | .00003      | .00002      | .00002      | .00002      | .00002      |

| <b>z</b>    | <b>0</b> | <b>0.01</b> | <b>0.02</b> | <b>0.03</b> | <b>0.04</b> | <b>0.05</b> | <b>0.06</b> | <b>0.07</b> | <b>0.08</b> | <b>0.09</b> |
|-------------|----------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
| <b>+0</b>   | .50000   | .50399      | .50798      | .51197      | .51595      | .51994      | .52392      | .52790      | .53188      | .53586      |
| <b>+0.1</b> | .53983   | .54380      | .54776      | .55172      | .55567      | .55966      | .56360      | .56749      | .57142      | .57535      |
| <b>+0.2</b> | .57926   | .58317      | .58706      | .59095      | .59483      | .59871      | .60257      | .60642      | .61026      | .61409      |
| <b>+0.3</b> | .61791   | .62172      | .62552      | .62930      | .63307      | .63683      | .64058      | .64431      | .64803      | .65173      |
| <b>+0.4</b> | .65542   | .65910      | .66276      | .66640      | .67003      | .67364      | .67724      | .68082      | .68439      | .68793      |
| <b>+0.5</b> | .69146   | .69497      | .69847      | .70194      | .70540      | .70884      | .71226      | .71566      | .71904      | .72240      |
| <b>+0.6</b> | .72575   | .72907      | .73237      | .73565      | .73891      | .74215      | .74537      | .74857      | .75175      | .75490      |
| <b>+0.7</b> | .75804   | .76115      | .76424      | .76730      | .77035      | .77337      | .77637      | .77935      | .78230      | .78524      |
| <b>+0.8</b> | .78814   | .79103      | .79389      | .79673      | .79955      | .80234      | .80511      | .80785      | .81057      | .81327      |
| <b>+0.9</b> | .81594   | .81859      | .82121      | .82381      | .82639      | .82894      | .83147      | .83398      | .83646      | .83891      |
| <b>+1</b>   | .84134   | .84375      | .84614      | .84849      | .85083      | .85314      | .85543      | .85769      | .85993      | .86214      |
| <b>+1.1</b> | .86433   | .86650      | .86864      | .87076      | .87286      | .87493      | .87698      | .87900      | .88100      | .88298      |
| <b>+1.2</b> | .88493   | .88686      | .88877      | .89065      | .89251      | .89435      | .89617      | .89796      | .89973      | .90147      |
| <b>+1.3</b> | .90320   | .90490      | .90658      | .90824      | .90988      | .91149      | .91308      | .91466      | .91621      | .91774      |
| <b>+1.4</b> | .91924   | .92073      | .92220      | .92364      | .92507      | .92647      | .92785      | .92922      | .93056      | .93189      |
| <b>+1.5</b> | .93319   | .93448      | .93574      | .93699      | .93822      | .93943      | .94062      | .94179      | .94295      | .94408      |
| <b>+1.6</b> | .94520   | .94630      | .94738      | .94845      | .94950      | .95053      | .95154      | .95254      | .95352      | .95449      |
| <b>+1.7</b> | .95543   | .95637      | .95728      | .95818      | .95907      | .95994      | .96080      | .96164      | .96246      | .96327      |
| <b>+1.8</b> | .96407   | .96485      | .96562      | .96638      | .96712      | .96784      | .96856      | .96926      | .96995      | .97062      |
| <b>+1.9</b> | .97128   | .97193      | .97257      | .97320      | .97381      | .97441      | .97500      | .97558      | .97615      | .97670      |
| <b>+2</b>   | .97725   | .97778      | .97831      | .97882      | .97932      | .97982      | .98030      | .98077      | .98124      | .98169      |
| <b>+2.1</b> | .98214   | .98257      | .98300      | .98341      | .98382      | .98422      | .98461      | .98500      | .98537      | .98574      |
| <b>+2.2</b> | .98610   | .98645      | .98679      | .98713      | .98745      | .98778      | .98809      | .98840      | .98870      | .98899      |
| <b>+2.3</b> | .98928   | .98956      | .98983      | .99010      | .99036      | .99061      | .99086      | .99111      | .99134      | .99158      |
| <b>+2.4</b> | .99180   | .99202      | .99224      | .99245      | .99266      | .99286      | .99305      | .99324      | .99343      | .99361      |
| <b>+2.5</b> | .99379   | .99396      | .99413      | .99430      | .99446      | .99461      | .99477      | .99492      | .99506      | .99520      |
| <b>+2.6</b> | .99534   | .99547      | .99560      | .99573      | .99585      | .99598      | .99609      | .99621      | .99632      | .99643      |
| <b>+2.7</b> | .99653   | .99664      | .99674      | .99683      | .99693      | .99702      | .99711      | .99720      | .99728      | .99736      |
| <b>+2.8</b> | .99744   | .99752      | .99760      | .99767      | .99774      | .99781      | .99788      | .99795      | .99801      | .99807      |
| <b>+2.9</b> | .99813   | .99819      | .99825      | .99831      | .99836      | .99841      | .99846      | .99851      | .99856      | .99861      |
| <b>+3</b>   | .99865   | .99869      | .99874      | .99878      | .99882      | .99886      | .99889      | .99893      | .99896      | .99900      |
| <b>+3.1</b> | .99903   | .99906      | .99910      | .99913      | .99916      | .99918      | .99921      | .99924      | .99926      | .99929      |
| <b>+3.2</b> | .99931   | .99934      | .99936      | .99938      | .99940      | .99942      | .99944      | .99946      | .99948      | .99950      |
| <b>+3.3</b> | .99952   | .99953      | .99955      | .99957      | .99958      | .99960      | .99961      | .99962      | .99964      | .99965      |
| <b>+3.4</b> | .99966   | .99968      | .99969      | .99970      | .99971      | .99972      | .99973      | .99974      | .99975      | .99976      |
| <b>+3.5</b> | .99977   | .99978      | .99978      | .99979      | .99980      | .99981      | .99981      | .99982      | .99983      | .99983      |
| <b>+3.6</b> | .99984   | .99985      | .99985      | .99986      | .99986      | .99987      | .99987      | .99988      | .99988      | .99989      |
| <b>+3.7</b> | .99989   | .99990      | .99990      | .99990      | .99991      | .99991      | .99992      | .99992      | .99992      | .99992      |
| <b>+3.8</b> | .99993   | .99993      | .99993      | .99994      | .99994      | .99994      | .99994      | .99995      | .99995      | .99995      |
| <b>+3.9</b> | .99995   | .99995      | .99996      | .99996      | .99996      | .99996      | .99996      | .99996      | .99997      | .99997      |
| <b>+4</b>   | .99997   | .99997      | .99997      | .99997      | .99997      | .99997      | .99997      | .99998      | .99998      | .99998      |